Identification of causal variants for T2D and related traits

Min Jin Go

Center for Genome Science Korea National Institute of Health

Contents

- > Introduction
- > META results
 - OGTT
 - Metabolic traits
 - AGEN T2D
 - AGEN FPG

Contents

> Introduction

- > META results
 - OGTT
 - Metabolic traits
 - AGEN T2D
 - AGEN FPG

How to interpret a GWAS

- Use high-throughput genotyping technologies
- Assay hundreds of thousands of SNPs
- Related them to clinical conditions and measurable traits

(Pearson & Manolio, JAMA. 2008)

How to conduct GWAS and META

Why a genetic study of T2D ?

- T2D huge, growing public health problem worldwide
 - risk factors : renal failure, retinopathy, peripheral neuropathy, cardiovascular diseases and so on
 - death rate: 22.9/100,000 in Korea in 2007 (5th ranked)
 - prevalence rate growing rapidly, as below;

(2008 Korea National Health and Nutrition Examination Survey)

- T2D is a chronic metabolic disease with multi-factorial pathogenesis
- Although the genetic contribution to T2D is well recognized, the current set of 60 established susceptibility loci, identified primarily through large-scale genome-wide association studies (GWAS), captures at best 10% of familial aggregation of the disease

• The characteristics (effect sizes and risk allele frequencies (RAFs)) of the variants contributing to the unexplained genetic variance remain far from clear

GWAS and META of T2D, ~2012

Contents

> Introduction

- > META results
 - OGTT, in revision
 - Metabolic traits
 - AGEN T2D
 - AGEN FPG

New susceptibility loci associated with one-hour plasma glucose as predisposing risk factors for type 2 diabetes

Min Jin Go¹, Joo-Yeon Hwang¹, Young Jin Kim¹, Ji Hee Oh¹, Yeon-Jung Kim¹, Soo Heon Kwak², Kyung Soo Park^{2,3}, Juyoung Lee¹, Bong-Jo Kim¹, Bok-Ghee Han¹, Myeong-Chan Cho⁴, Yoon Shin Cho^{1,5,*} and Jong-Young Lee^{1,*}

Introduction

• Impaired glucose tolerance (IGT) and impaired fasting glucose (IFG) as an intermediate risk factor for T2D

- After adjustment for 1-hPG, the high fasting plasma glucose (FPG) level is not associated with an increase in the incidence of T2D
- 1-hPG levels are associated with elevated liver enzymes, kidney dysfunction, coronary heart disease and left ventricular hypertrophy
- Most previous studies have a limited impact on FPG and 2-hPG values for glycemic traits from Eurocentric consortium
- Identifying new genetic susceptibility predisposing to early plasma glucose condition would be more valuable as an important parameter for risk stratification in glucose abnormalities

Study scheme

Descriptive statistics

Trait	KARE (n = 7,696)	Health2 ($n = 6,536$)			
AGE	51.64 ± 8.80	56.14 ± 7.94			
SEX(M/F)	3584/4112	2584/3952			
BMI	24.48 ± 3.08	24.35 ± 3.14			
FPG (mmol/l)	4.62 ± 0.49	5.03 ± 0.50			
1-hPG (mmol/l)	7.94 ± 2.26	8.78 ± 2.48			
2-hPG (mmol/l)	6.42 ± 1.68	6.66 ± 1.79			

Association results for glycemic traits

					KARE				Health2			Meta analysis			
Trait	CHR	SNP	Gene	A1	Ν	Beta ± sem	Р	Ν	Beta ± sem	Р	Ν	Beta ± sem	Р	Hetero P	
FPG	7	rs1799884	GCK	А	7685	0.065 ± 0.010	4.06E-11	6526	0.061 ± 0.011	2.14E-08	14211	0.063 ± 0.007	4.53E-18	0.8161	
	11	rs10830962	MTNR1B	С	7552	0.036 ± 0.008	3.49E-06	6529	0.049 ± 0.009	1.60E-08	14081	0.041 ± 0.006	4.84E-13	0.2647	
	12	rs2074356	C12orf51	Т	7695	-0.054 ± 0.011	5.42E-07	6498	-0.070 ± 0.012	1.43E-08	14193	-0.061 ± 0.008	6.03E-14	0.3249	
	6	rs9348440	CDKAL1	А	7651	0.214 ± 0.036	3.72E-09	6522	0.290 ± 0.042	5.99E-12	14173	0.246 ± 0.028	3.13E-19	0.1707	
	7	rs1799884	GCK	А	7641	0.232 ± 0.046	4.47E-07	6520	0.175 ± 0.054	0.0013	14161	0.208 ± 0.035	2.82E-09	0.4213	
1 1.00	11	rs10830962	MTNR1B	С	7508	0.179 ± 0.036	6.16E-07	6523	0.207 ± 0.042	1.01E-06	14031	0.191 ± 0.027	3.24E-12	0.6192	
1-nPG	12	rs12229654	MYL2	G	7650	-0.262 ± 0.051	2.60E-07	6525	-0.299 ± 0.060	6.70E-07	14175	-0.277 ± 0.039	8.83E-13	0.6407	
	12	rs2074356	C12orf51	Т	7651	-0.296 ± 0.050	3.65E-09	6492	-0.357 ± 0.061	4.10E-09	14143	-0.321 ± 0.039	1.04E-16	0.4335	
	12	rs11066453	OAS1	G	7595	-0.290 ± 0.054	8.52E-08	6523	-0.175 ± 0.064	0.0062	14121	-0.242 ± 0.041	4.54E-09	0.1717	
2 1 10 0	7	rs1799884	GCK	А	7647	0.186 ± 0.034	3.97E-08	6519	0.129 ± 0.039	0.0009	14166	0.162 ± 0.026	2.59E-10	0.2753	
2-hPG	12	rs2074356	C12orf51	Т	7657	-0.182 ± 0.037	8.52E-07	6491	-0.140 ± 0.044	0.0015	14148	-0.165 ± 0.028	5.91E-09	0.4661	

Summary

• Most recently, one-hour hyperglycemia has been recognized as a further risk factor for T2D

• To date, previous GWAS for glycemic traits have a limited impact on the fasting state and 2-h plasma glucose level in an oral glucose challenge

• To identify genetic susceptibility in different stages of glucose tolerance, we performed a meta-analysis for glycemic traits including 1-hPG from 14,232 non-diabetic individuals in the Korean population

• Newly implicated variants (*MYL2*, *C12orf51* and *OAS1*) were found to be significantly associated with 1-hPG. We also demonstrated associations with GDM

• Our results could provide additional insight into the genetic variation in the clinical range of glycemia

Contents

> Introduction

> META results

- OGTT

- Metabolic traits, published in Nat Gent
- AGEN T2D
- AGEN FPG

Kim et al. Nature Genetics, 2011

Study scheme

Descriptive statistics of variables

Study KARE		HEXA-shared control	BBJ	SJTU	Health2	
Stars	Discourse	Discourse	in silico	De novo	De novo	
Stage	Discovery	Discovery	replication	replication	replication	
Study design	Population-based	Population-based	Case-control	Donulation based	Dopulation based	
	Prospective	Multicenter	Multicenter	Population-based	Population-based	
Sample size	8842	3703	15764	6770	7861	
Age (yr)	52.22 ± 8.92	53.21 ± 8.33	63.70 ± 10.50	55.92 ± 14.25	56.58 ± 7.85	
Male/Female	4183/4689	1651/2052	10400/5364	3087/3683	3124/4647	
TG (mg/dl)	162.44 ± 104.53	123.29 ± 91.40	151.20 ± 108.60	148.87 ± 188.05	157.26 ± 108.94	
HDLc (mg/dl)	44.66 ± 10.10	54.61 ± 13.27	51.80 ± 14.60	47.56 ± 18.19	46.34 ± 11.24	
LDLc (mg/dl) ^{\$}	115.65 ± 32.14	119.04 ± 31.39	126.00 ± 34.00	110.71 ± 48.45	127.70 ± 34.57	
FPG (mg/dl)	4.62 ± 0.49	5.00 ± 0.56	NA	NA	5.03 ± 0.50	
ALB (g/dl)	4.24 ± 0.33	4.65 ± 0.29	4.26 ± 0.35	NA	4.62 ± 0.27	
BUN (mg/dl)	14.37 ± 3.80	14.02 ± 3.83	15.30 ± 3.90	15.57 ± 6.84	15.77 ± 4.51	
GGT (IU/L)	36.08 ± 66.17	32.03 ± 40.74	39.40 ± 26.80	29.28 ± 30.77	39.81 ± 86.43	
ALT (IU/L)	28.39 ± 25.60	24.44 ± 20.04	23.70 ± 12.60	24.67 ± 23.88	26.36 ± 20.22	
AST (IU/L)	29.91 ± 18.62	24.51 ± 12.94	24.10 ± 9.20	22.57 ± 17.97	29.47 ± 26.79	

Nine metabolic traits are abbreviated as follows: high density lipoprotein cholesterol (HDLc), low density lipoprotein cholesterol (LDLc), triglyceride (TG), fasting plasma glucose (FPG), albumin (ALB), blood urea nitrogen (BUN), gamma glutamyl transferase (GGT), alanine aminotransferase (ALT), aspartate aminotransferase (AST). \$Low density lipoprotein cholesterol is calculated by using the Friedewald's formula. KARE, Korea Association Resource study; HEXA, Health Examinee cohort; BBJ, BioBank Japan study; SJTU, Shanghai Jiao Tong University cohort; NA, data not available.

Result of Stage 1

Result of Stage 1

Association results for metabolic traits

							Discovery meta-analysis (KARE+HEXA shared control)		
Trait	Logue	Position		Candidate	فالمالمة	MAE	Effect sizes	P	Sample
Di	- Paliting Sa	rostion	Lead Star	Relie	Allele	INI-1	Effect arze	r	976
Plasm	a lipid trafts								
HDLc	12q24.11	110,000,000	rs12229654	MYL2	G/T	0.14	-0.0284 ± 0.0041	3.20×10^{-12}	12,394
	12q24.13	110,000,000	rs2074356	C12orf51	T/C	0.15	-0.0338 ± 0.0040	2.31×10^{-17}	12,502
Glycer	nic trait								
FPG	2p21	45,041,857	rs895636	\$1X2-\$1X3	T/C	0.38	0.0392 ± 0.0070	1.87×10^{-8}	11,043
Renal	function-rela	ted traits							
ALB	19q13.33	54,691,821	rs2280401	RPS11	A/G	0.17	0.0312 ± 0.0051	6.43×10^{-10}	12,541
BUN	6q22.33	128,000,000	rs6569474 ^d	RSP03	A/T	0.47	-0.0172 ± 0.0032	$4.80 imes 10^{-8}$	12,510
Liver e	nzymes								
GGT	4q31.22	147,000,000	rs4835265	ZNF827	A/C	0.42	-0.0047 ± 0.0009	6.21×10^{-8}	10,503
	7q11.23	72,615,834	rs12539316*	TBL-	G/A	0.10	0.0081 ± 0.0014	2.41×10^{-8}	10,492
				BCL7B					
	12q24.11	110,000,000	rs12229654	MYL2	G/T	0.14	0.0132 ± 0.0012	2.23×10^{-26}	10,450
	12q24.13	111,000,000	rs2074356	C12orf51	T/C	0.15	0.0165 ± 0.0012	2.05×10^{-41}	10,505
	12q24.13	112,000,000	rs11066453	OAS1	G/A	0.13	0.0105 ± 0.0013	1.55×10^{-15}	10,434
ALT	12q24.13	111,000,000	rs11066280	C12orf51	A/T	0.17	0.0044 ± 0.0008	$6.19 imes 10^{-9}$	12,241
AST	12q24.13	111,000,000	rs11066280	C12orf51	A/T	0.17	0.0013 ± 0.0002	$9.74 imes 10^{-14}$	12,241

		Replication (BBJ+H	on meta-analysis lealth2+SJTU)		Overall (Discove			
			-	Sample		-	Sample	
Trait	Locus	Effect size ^c	P	si ze	Effect size ^c	P	si ze	Phet
Plasm	a lipid traits							
HDLc	12q24.11	-0.0277 ± 0.0039	1.17×10^{-12}	13,784	-0.0280 ± 0.0028	$3.41 imes 10^{-23}$	26,178	9.02×10^{-1}
	12q24.13	-0.0360 ± 0.0038	3.59×10^{-21}	13,784	-0.0350 ± 0.0028	$6.95 imes 10^{-37}$	26,286	6.90×10^{-1}
Glycer	nic trait							
FPG	2p21	0.0395 ± 0.0090	1.13×10^{-5}	6,574	0.0393 ± 0.0055	$9.99 imes 10^{-13}$	17,617	6.69×10^{-1}
Renal	function-rela							
ALB	19q13.33	0.0267 ± 0.0067	6.82×10^{-5}	9,469	0.0293 ± 0.0041	8.73×10^{-13}	22,010	5.95×10^{-1}
BUN	6q22.33	-0.0044 ± 0.0017	8.93×10^{-3}	22,076	-0.0090 ± 0.0016	1.26×10^{-8}	34,586	$4.12 imes 10^{-4}$
Liver e	enzymes							
GGT	4q31.22	-0.004 ± 0.0007	1.03×10^{-9}	13,874	-0.0043 ± 0.0006	1.01×10^{-14}	24,377	5.39×10^{-1}
	7q11.23	0.0029 ± 0.0010	5.44×10^{-3}	13,902	0.0051 ± 0.0008	$5.81 imes 10^{-10}$	24,394	$2.51 imes 10^{-3}$
			~					
	12q24.11	0.0109 ± 0.0009	3.29×10^{-34}	13,840	0.0119 ± 0.0007	8.76×10^{-58}	24,290	1.29×10^{-1}
	12024.13	0.0158 ± 0.0008	6.25×10^{-85}	17,807	0.0161 ± 0.0007	2.88E-126	28,312	6.27×10^{-1}
	12024.13	0.0092 ± 0.0008	2.41×10^{-28}	17,852	0.0097 ± 0.0007	$6.27 imes 10^{-44}$	28,286	$3.94 imes 10^{-1}$
ALT	12024.13	0.0046 ± 0.0006	2.54×10^{-14}	21,456	0.0045 ± 0.0005	7.62×10^{-22}	33,697	8.36×10^{-1}
AST	12024.13	0.0018 ± 0.0001	1.85×10^{-38}	21,646	0.0016 ± 0.0001	2.77×10^{-63}	33,887	2.53×10^{-2}

Summary of GWAS for metabolic traits

Summary of GWAS for metabolic traits

Multiple diverse genetic effect

Locus	SNP ID	Position (bp)	Candidate gene	Affected Trait	Variable transformation	Effect allele (frequency)	Effect size ^a	Pb	Affected trait(s) identified from previous studies
2p23.3	rs780092	27,596,658	GCKR	ALB	No	C (0.33)	-0.0235 ± 0.0040	4.75 × 10 ^{-9,b}	HTG ¹⁹ , TGC ²⁰ , eGFRcrea ²¹ , SUA ²² , CRP ²³ , FI ²⁴ , HOMA-IR ²⁴ , FPG ²⁴ , SU ²⁵
				TG	Ln	C (0.33)	-0.0500 ± 0.0046	4.58×10^{-27}	
7q11.23	rs12539316	72,615,834	TBL2-BCL7B	GGT	1/sqrt	G (0.10)	0.0051 ± 0.0008	5.81×10^{-10}	TG ¹³ , SLE ²⁶ , eGFRcrea ²¹
	rs2286276	72,625,290		TG	Ln	A (0.10)	-0.0652 ± 0.0082	1.44×10^{-15}	
8p21.3	rs10503669	19,891,970	LPL	TG	Ln	A (0.12)	-0.0857 ± 0.0065	6.84 × 10 ⁻³⁹	HTG19, MCV1
				HDLc	Ln	A (0.12)	0.0426 ± 0.0031	8.04×10^{-43}	
9q34.2	rs651007	135,143,696	ABO	LDLc	No	A (0.26)	2.2026 ± 0.3841	9.78 × 10 ⁻⁹	MCHC ¹ , PC ²⁷ , VTE ²⁸ , E-selectin ²⁹ , P-selec- tin ³⁰ , ICAM-1 ³⁰ , RBC ¹ , HB ¹ , HT ¹ , ALP ¹ , ACE ³¹
11q23.3	rs11216126	116,122,450	ZNF259-APOA1/ C3/A4/A5-BUD13	HDLc	Ln	C (0.20)	0.0322 ± 0.0026	2.6 × 10 ⁻³⁴	ATC ³² , HDLc ¹³ , HTG ¹⁹ , Glioma ³³ , SLE ²⁶
	rs603446	116,159,645		TG	Ln	T (0.23)	-0.0875 ± 0.0051	2.03×10^{-65}	
12q24.11	rs12229654	109,898,844	MYL2	HDLc	Ln	G (0.14)	-0.0280 ± 0.0028	3.41 × 10 ⁻²³	HDLc ¹³
				GGT	1/sqrt	G (0.14)	0.0119 ± 0.0007	8.76 × 10-58	
12q24.13	rs2074356	111,129,784	C12orf51	HDLc	Ln	T (0.15)	-0.0350 ± 0.0028	6.95 × 10 ⁻³⁷	T1D ³⁴ , WHR ⁴
				GGT	1/sqrt	T (0.15)	0.0161 ± 0.0007	2.88×10^{-126}	
	rs11066280	111,302,166	C12orf51	ALT	1/sqrt	A (0.17)	0.0045 ± 0.0005	7.62 × 10 ⁻²²	
				AST	Reciprocal	A (0.17)	0.0016 ± 0.0001	2.77×10^{-63}	

Table 2 Pleiotropic loci detected from GWAS for various traits

Previous studies were retrieved based on *P* < 5 × 10⁻⁷. Information for SNP ID and chromosomal position is based on NCBI genome build 36 and dbSNP build 129. ALB, albumin; TG, triglyceride; GGT, gamma glutamyl transferase; HDLc, high density lipoprotein cholesterol; LDLc, bw density lipoprotein cholesterol; AST, aspartate aminotransferase; HTG, hypertriglyceridemia; TGC, two hour glucose; eGFRcrea, estimated glomerular filtration rate by serum creatinine; SUA, serum uric acid; CRP, c-reactive protein; FI, fasting insulin; HOMA-IR, insulin resistance; FPG, fasting plasma glucose; SU, serum urate; SLE, serum lupus erythematosus; MCV, mean corpuscular volume; MCHC, mean corpuscular hemoglobin concentration; PC, pancreatic cancer; VTE, vencus thromboembolism; ICAM-1, intercellular adhesion molecule-1; RBC, erythrocyte count; HB, hemoglobin concentration; HT, hematocrit; ALP, alkaline phosphatase; ACE, angiotensin-converting enzyme activity; ATC, alpha-tocopherol; T1D, type 1 diabetes; WHR, waist hip ratio; Ln, natural log; 1/sqrt, inverse square root.

*All P values are the overall meta-analysis (discovery+replication) P value except the P value given for ^bALB, which is the discovery P value. *Effect sizes are listed as $\beta \pm$ s.e.m.

Summary

To identify the genetic bases for 9 metabolic traits, we conducted a meta-analysis combining

Korean genome-wide association results from the KARE project (n = 8,842) and the HEXA

shared control study (n = 3,703)

Replication study; *in silico* from the BioBank Japan GWAS (n = 15,764) and *de novo* from the Health2 (n = 7,861) and Shanghai Jiao Tong University Diabetes cohorts (n = 6,770)

We identified ten genome-wide significant signals newly associated with traits from an overall meta- analysis

Novel associations involved; 12q24.11 (near *MYL2*) and 12q24.13 (in *C12orf51*) for HDLc, 2p21 (near *SIX2-SIX3*) for FPG, 19q13.33 (in *RPS11*) and 6q22.33 (in *RSPO3*) for renal traits, 12q24.11 (near *MYL2*), 12q24.13 (in *C12orf51*, near *OAS1*), 4q31.22 (in *ZNF827*) and 7q11.23 (near *TBL2-BCL7B*) for hepatic traits

These findings highlight previously unknown biological pathways for metabolic traits investigated in this study.

Contents

> Introduction

> META results

- OGTT

- Metabolic traits
- AGEN T2D, published in Nat Gent
- AGEN FPG

genetics

Meta-analysis of genome-wide association studies identifies 8 new loci for type 2 diabetes in East Asians

Yoon Shin Cho^{1,§,¶}, Chien-Hsiun Chen^{2,3,§}, Cheng Hu^{4,§}, Jirong Long^{5,§}, Rick Twee Hee Ong^{6,§}, Xueling Sim^{7,§}, Fumihiko Takeuchi^{8,§}, Ying Wu^{9,§}, Min Jin Go^{1,§}, Toshimasa Yamauchi^{10,§}, Yi-Cheng Chang^{11,§}, Soo Heon Kwak^{12,§}, Ronald C.W. Ma^{13,§}, Ken Yamamoto^{14,§}, Linda S. Adair¹⁵, Tin Aung^{16,17}, Qiuvin Cai⁵, Li-Ching Chang², Yuan-Tsong Chen², Yutang Gao¹⁸, Frank B. Hu¹⁹, Hvung-Lae Kim^{1,20}, Sangsoo Kim²¹, Young Jin Kim¹, Jeannette Jen-Mai Lee²², Nanette R. Lee²³, Yun Li^{9,43}, Jian Jun Liu²⁴, Wei Lu²⁵, Jiro Nakamura²⁶, Eitaro Nakashima^{26,27}, Daniel Peng-Keat Ng²², Wan Ting Tay¹⁶, Fuu-Jen Tsai³, Tien Yin Wong^{16,17,28}, Mitsuhiro Yokota²⁹, Wei Zheng⁵, Rong Zhang⁴, Congrong Wang⁴, Wing Yee So¹³, Keizo Ohnaka³⁰, Hiroshi Ikegami³¹, Kazuo Hara¹⁰, Young Min Cho¹², Nam H Cho³², Tien-Jyun Chang¹¹, Yuqian Bao⁴, Åsa K Hedman⁴⁴, Andrew P Morris⁴⁴, Mark I McCarthy^{44,45}, DIAGRAM consortium⁴⁶, MuTHER consortium⁴⁶, Ryoichi Takayanagi^{30,*}, Kyong Soo Park^{12,33,*}, Weiping Jia^{4,*}, Lee-Ming Chuang^{11,34,*}, Juliana C.N. Chan^{13,*}, Shiro Maeda^{35,*}, Takashi Kadowaki^{10,*}, Jong-Young Lee^{1,*}, Jer-Yuam Wu^{2,3,*}, Yik Ying Teo^{22,24,36,37,38,*}, E Shyong Tai^{39,40,41,*,¶}, Xiao Ou Shu^{5,*}, Karen L Mohlke^{9,*}, Norihiro Kato^{8,*}, Bok-Ghee Han^{1,*}, Mark Seielstad^{24,42,47,*,¶+</sub>}

International collaboration network

Store	Doprocontativo	Cturdu.	Ethnic group	S	ample size	
Stage	Representative	Study	Ethnic group	case	control	total
Stage 1	KNIH	KARE	Korean	1042	2943	3985
	NUS/SERI	SDCS/SP2(1)	Chinese	1082	1006	2088
		SDCS/SP2(2)	Chinese	928	939	1867
		Simes	Malay	794	1240	2034
	NCGM	CAGE	Japanese	931	1404	2335
	VU/SCI	SDGS	Chinese	1019	1710	2729
	SINICA	TDS	Chinese	997	999	1996
	UNC	CLHNS	Filipino	159	1624	1783
	total			6952	11865	18817
Stage 2	RIKEN/UT	BBJ	Japanese	4470	3071	7541
	KNIH	H2T2DS	Korean	1183	1305	2488
	SJTU	SJTUDS	Chinese	190	198	388
	total			5843	4574	10417
Stage 3	NCGM	CAGE	Japanese	5253	5903	11156
	SJTU	SDIID/SDS	Chinese	3410	3412	6822
	CUHK	CUHKDS	Chinese	1477	1584	3061
	NTUH	NTUHDS	Chinese	1512	1512	3024
	SNUH	SNUHDS	Korean	632	761	1393
	total			12284	13172	25456
Overall	AGEN	AGEN-T2D	East Asian	25079	29611	54690

Manhattan plot and QQ plots

for the EA T2D stage 1 meta-analysis

Association results for T2D

CNID	ch.	Desilities (her)	Mandara	Risk allele	Other	Stage 1 (discovery)		Stage 2 (in silico replication)		Stage3 (de novo replication)		Combined (stage 1+2+3)	
SNP	Chr	Position (bp)	(op) Nearby gene		allele	OR (CI)	P-value	OR (CI)	P-value	OR (CI)	P-value	OR (CI)	P-value
						up to 6,952 c 11,865 cor	ases and ntrols	up to 5,843 case contro	es and 4,574 bls	up to 12,284 c 13,172 cor	ases and ntrols	up to 25,079 c 29,611 cor	ases and ntrols
		Loc	i showing strong eviden	ce of a	ssociati	on with T2D							
rs6815464	4	1299901	MAEA	с	g	1.09 (1.04-1.14)	8.21E-04	1.13 (1.07-1.20)	3.67E-05	1.16 (1.11-1.20)	4.15E-15	1.13 (1.10-1.16)	1.57E-20
rs70 4 1847	9	4277466	GLIS3	в	9	1.09 (1.04-1.14)	1.29E-04	1.09 (1.03-1.15)	2.20E-03	1.11 (1.07-1.15)	2.89E-09	1.10 (1.07-1.13)	1.99E-14
rs6017317	20	42380380	FITM2-R3HDML-HNF4A	g	t	1.10 (1.05-1.15)	2.43E-05	1.07 (0.99-1.15)	8.42E-02	1.10 (1.06-1.14)	3.96E-07	1.09 (1.07 <mark>-1.1</mark> 2)	1.12E-11
rs6467136	7	126952194	GCC1	g	а	1.12 (1.06-1.18)	6.47E-05	1.11 (1.04-1.18)	2.09E-03	1.10 (1.05-1.15)	2.31E-05	1.11 (1.07-1.14)	4.96E-11
rs831571	3	64023337	PSMD6	с	∖.t	1.11 (1.06-1.17)	4.85E-06	1.06 (1.00-1.13)	4.46E-02	1.08 (1.05-1.12)	1.41E-05	1.09 (1.06-1.12)	8.41E-11
rs9470794	6	38214822	ZFAND3	с	t	1.11 (1.05-1.17)	1.45E-04	1.09 (1.02-1.17)	1.48E-02	1.16 (1.09-1.23)	3.20E-06	1.12 (1.08-1.16)	2.06E-10
rs3786897	19	38584848	PEPD	а	9	1.14 (1.08-1.20)	3.74E-06	1.05 (0.99-1.12)	1.28E-01	1.11 (1.04-1.17)	5.46E-04	1.10 (1.07-1.14)	1.30E-08
rs1535500	6	39392028	KCNK16	t	g	1.11 (1.06-1.16)	5.34E-06	1.07 (1.01-1.15)	3.33E-02	1.06 (1.02-1.10)	3.50E-03	1.08 (1.05-1.11)	2.30E-08
		Loci	showing moderate evide	nce of	associa	tion with T2D							
rs16955379*	16	80046874	CMIP	с	t	1.13 (1.07-1.20)	2.20E-05	1.10 (1.03-1.17)	6.59E-03	1.05 (1.01-1.10)	2.19E-02	1.08 (1.05-1.12)	2.8 <mark>4E-0</mark> 7
rs17797882	16	779644 <mark>1</mark> 9	WWOX	t	c	1.12 (1.05-1.18)	1.76E-04	1.09 (1.02-1.16)	1.21E-02	1.06 (1.01-1.11)	1.61E-02	1.08 (1.05-1.12)	9.49E-07
*Proxy SNP, rs99	930117 ((r²=1), was genotyp	ed in the stage3 CAGE study.										

Summary

To identify susceptibility loci for T2D in east Asian populations, we followed our stage 1 meta-analysis of 8 T2D GWASs (6,952 cases and 11,865 controls) with a stage 2 *in silico* replication analysis (5,843 cases and 4,574 controls) and a stage 3 *de novo* replication analysis (12,284 cases and 13,172 controls)

8 new T2D loci from combined analysis; GLIS2, PEPD, FITM2-R3HDML-HNF4A, KCNK16, MAEA, GCC1-PAX4, PSMD6 and ZFAND3

These findings, derived from an east Asian population, provide new perspectives on the etiology of T2D

Contents

> Introduction

> META results

- OGTT
- Metabolic traits
- AGEN T2D
- AGEN FPG, under process

Identification of novel variants implicated in

Fasting plasma glucose in East Asians

Introduction

- Type 2 diabetes is relatively characterized by high circulating levels of fasting plasma glucose (FPG), one of the major risk factor.
- To identify novel T2D and FPG loci in a large sample using staged genome-wide association studies (GWAS) with meta-analysis.
- We performed three-stage design involving a discovery set (stage1) of 23,500 populations and *in silico* replication (stage 2) and *de novo* replication (stage 3) from independent East Asians populations.

Study Scheme

KN

STAGE 2	STAGE 3		
In silico replication	<i>De novo</i> replication , Follow-up analyses		
3,500 individuals from 1 studies with	 21,300 individuals from 11 studies		
East Asian ancestry	with East Asian ancestry Comparison published data and Magic lookup Comparison AGEN-T2D Pathway and protein-protein interaction analysis eQTL		
.0 ⁻⁴ Stror Joint meta analyses of 22 SNPs (Stage1 + Stage2) Previous FPG loci : GCKR, SIX2-SIX3, G6PC2/ABCB11,	ngly associated SNP from 4 new regions showing th compelling evidence for association (<i>P</i> < 5 X 10 ⁻⁸)		
	Doint meta analyses of 22 SNPs (Stage1 + Stage2) Previous FPG loci : GCKR, SIX2-SIX3, GGPC2/ABCB11,		

Cohort characteristics

Stage	Study	Ethnic group	Ν	Study design	% Female s	Mean age years	FPG	BMI
Stage 1 : discovery								
KNIH	KARE	Korean	7696	Population-based, prospective	4112	51.64 ± 8.80	4.62 ± 0.49	24.48 ± 3.08
	HEXA	Korean	3385	Population-based	1932	52.70 ± 8.17	5.00 ± 0.56	23.88 ± 2.89
NUS	SP2	Chinese	2282	Population-based	339	46.79 ± 10.21	4.73 ± 0.46	
					815	47.79 ± 11.11	4.70 ± 0.52	
					72	49.02 ± 12.51	4.77 ± 0.54	
VU/SCI	SWHS	Chinese	5284	Population-based	2034	49.37 ± 8.47	5.14 ± 1.52	
					3250			
GenSalt	GenSalt	Han Chinese	1832	Family-based				
NCGM	CAGE	Japanese	756	Case-control multicenter; population-base	345	65.14 ± 7.39	5.32 ± 0.51	
UNC	CLHNS	Filipino	1624	Population-based	1624	48.33 ± 6.10	5.03 ± 0.62	
CRC	CRC	Chinese	733	population-based	559	43.7 ± 7.8	4.87 ± 0.44	
Yonsei Uni		Korean	956	population-based				
			24548					
Stage 2 : in silico replication								
KNIH	Rural	Korean	3187 3187	Population-based				
Stage 2 , follow up conligation								
	Hoolth 2	Karaan	5277	Deputation based				
	nealuiz	Noreall	1025	Population-based				
BBJ	Chang	Japanese	1835					
	Cheng		3412					
TADARA	Nomura	Japanese	1940					
	Tokonama	Japanese	1000					
	Chinama	Japanese	1004					
	Shigaraki	Japanese	1964					
	Unasama	Japanese	771					
	Matsuyama	Japanese	1502					
	Toon	Japanese	1502					
ПК			4/4					
			2129/					
Overall	AGEN	East Asian	49032					

Asian Genetic Epidemiology Network FPG (AGEN-FPG) : 23,500

- Korea Association Resource (KARE) Project : 7,696
- Singapore Prospective Study Program (SP2) : 2,282
- Shanghai Women's Health Study (SWHS) : 4,360
- Genetic Epidemiology Network of Salt-Sensitivity (GenSalt) : 1,832
- National Center for Global Health and Medicine, Japan (NCGM) : 756
- Cebu Longitudinal Health and Nutritional Survey (CLHNS) : 1,624
- Cardiometabolic Risk in Chinese (CRC) study : 733
- Health Examinees Study (HEXA) : 3,385
- Yonsei : 800

Association analysis

- Non-diabetes individuals were only tested for fasting plasma glucose (exclude known diabetes, individuals treated with anti-diabetic medicine and individuals with fasting glucose ≥ 7 mmol/l)
- Within each study, the rank-based inverse normal transformation (INT) was applied to FPG and performed linear regression analysis in an additive genetic model with adjustment for sex, BMI, ethnicity (if applicable) and principal component factors (if applicable)
- Because of the family design of GenSalt, family relationship was adjusted using the linear mixed model in which family ID was used as a random effect

Stage 1 meta analysis (DISCOVERY):

 After quality control (exclude study-specific imputation quality), approximately 2.4 million directly genotyped or imputed markers were tested using the inverse variance meta-analysis assuming fixed effects.
 We applied genomic control correction at the each study and metaanalysis to avoid population stratification.

SNP selection for Stage1

- *P*-value < 1 X 10⁻⁵
- Presented SNPs that are common (MAF > = 5%)
- subjects from more than eight study sites (of 12) GWAS were available for then meta analysis
- Heterogeneity P-value < 1 X 10⁻³
- which is in LD with the reported SNP ($r^2 > 0.2$)

Manhattan plots for the AGEN stage 1 meta-analysis

Chromosome

Qunatile-quantile plot for the AGEN stage 1 meta-analysis

The expected null distribution is plotted along the **black** diagonal, the entire distribution of observed P values is plotted in **red** and a distribution that excludes the 12 reported previously loci is plotted is **blue** and excludes the newly discovered loci is plotted is **green**.

Ways to explain missing heritability

1. GWA meta-analysis & ethnic specific GWAS

- more common variants
- ethnic specific variants

2. Fine mapping of candidate T2D loci or Exome sequencing

- low frequency variants
- rare variants
- causal variants

3. Structural variants

- CNVs
- indels

4. Others

- GXG interaction, GXE interaction
- epigenetic modifications

Acknowledgements

<u>국립보건연구원</u>

형질연구과 유전체역학과 생물자원은행과 한복기, 조명찬 서울의대: 박경수

MERK: 김규찬

이화여자대학교: 김형래

경희대학교: 오범석

한림대학교 : 조윤신

<u> 한국인 유전체역학 코호트</u>

조남한, 신철, 강대희, 최보율, 정혜원, 성주헌

All AGEN members